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CHAPTER I 

IXTRODUCTION 

Although one cannot expect exact solutions for a given quantum 

mechanical eigenvalue problem, it is often possible to find upper and 

lower bounds to the eigenvalues. Upper bounds can be obtained satis- 

factorily by the well-known variational calculations, for, example, 

Rayleigh-Ritz procedures [ lJe3;  however, in ozder to estimate the 

.accuracy, the knowledge of lower bounds is essential. 

Thz problem of finding lower bounds has been approached in 

many different ways. Among those, the intermediate problems origi- 

nated by A. Wein~tein'~] and extended and developed by hronszajn c k l  

have baen widely used. 

been studied by Bazley and Fox[51 using these intermediate problems. 

Many fundamental problems in quantum theory have 

Recently P. 0. LUwdin has developed a new method 1 6 j 7 '  for the 

study of lower bounds to energy eigenvalues by the use of the parti- 

tioning techniquer8'. 

iteration procedure & 

value E. 

in the Hilbert Space, one ca3 evaluate lower bounds to any dcsized 

accuracy. For a Hamiltonian of the forn fl= %Po $- V, where V is 

In the partitioning technique, the first order 

= f(Gk) brackets at least one true eig:en- 

By means of an ''inrrer projectionglE6J on a finite manifold 
k-f-1 

positive definite, one may consider the intermedizte Hamiltonians: 

I 



where Qn i s  a Hermitian p r o j e c t i o n  opera tor  f o r  an a r b i t x x y  subspace 

of order  n, which for n-rn converges towards the  i d c n t i t y  ope ra to r  C4,93 

I n  the  f i r s t  p a r t  of t h i s  d i s s e r t a t i o n ,  we develop t h e  theo-  

r e t i c a l  foundat ions of our approach through Che p a r t i t i o n i n g  technique 

extended t o  a multi-dimensional re ference  manifold.  

I n  the l a s t  p a r t ,  we apply these procedures  t o  t h e  S t a r k  

e f f e c t  i n  the  r i g i d  r o t a t o r  as an example of a one-dimensional refer- 

ence manifold and t o  the two-electron i s o e l e c t r o n i c  s e r i e s  as a n  

example of a multi-dimensional r e fe rence  manifold.  



CHAPTER I1 

VARIATION PRINCIPLE AND SEPA.RATION THEOREM 

For a Hamiltonian operator f l  which is bounded from below, 
a variational calculation gives an upper bound to the ground state 

eigenvalue of f l .  The variation principle states dC f l  7 AV = 0, 

where 4& >Av is the expectation value of the operator f i  : 

Let us consider that the trial function Y is expanded in terns of a 

complete set of functions (8 1 I which has the overlap 

matrix A with the elements 

The Hamiltonian is then represented by a matrix with the elements 

In practical calculations the complete set 18) has to be truncated to 

a s e t  (0 I n  E ($51,@2,...,@n] of a finite order, say order n, so that 

n 

Y = 1 Cidi . 
i=l 

In order to improve our expectation value u s i n g  this finite discrete 

3 



(2.5) 

i 7  
e n b i  = d 

d a d  cha rac t e r i zcd  by t h e  r e l a t i o n s  
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p . , 
cy-. 'Ui = E ; .  (i-i-;,2 ,..., n> , (2.iij 

1 

it is possible to diagonalize the $,! s.nd & ;xitrices simuitancousiy 
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will have n+l eigenvalues. 

sometimes use m for n+l in this chapter. 

For the simplicity of notation, we will 

It is interesting to see how these uppGr Louncis given by the 

variation principle are improved by enlarging the subspace in which 

the trial function Y is varied. This effect is qualitatively explained 

by the well-known "separation theorem" [loJ1ll, which states that the n 

eigenvalues of fln are upper bounds to the n eigenvalues of g i n  

order from below, and the eigenvalues of fln and flm satisfy the 
f o 1 1 ow i ng i ne q ua 1 i t y : 

El 5 hl 4, E2 f . . . f; En G hn f En+l 
7 

where h 

eigcnvalucs of 

denotes the n eigenvalues of fln and E. denotes the n+l i 1 
fl  n+l 

Let us now study the separation theorem in somewhat more detail 

in connection with the degeneracy and the common eigenvalues of fln 
and kp n+l since they are  closely related to the asymptotic behavior 

and the lost eigenvalues in the partitioning technique [6,121 

In the following, for simplicity, we will work with the ortho- 

normal set of (0 ],* 

Let us consider a matrix Wm with the matrix eiements of the 
f orin 

%Qij =u.m 1 1 0 2 ,  3 (i, j=1,2,. . .n,in) 
m and transform the natrix ?+ by means of the unitnry transformation : 

(2.16) 



where Ql is the n-dimensional unitary :;itrix consisting of eigenvectors 

of W . Then we obtain a secular equation of the form: n -%2 

'ml 

I 1 'nm 

h, -E 
1 

0 

vm2 

0 

h2 -E 

. . .  mn V 

hn-E 

= 0 ,  

where 

'.. ...... ....**........... . . . I .  * ...... . _  .. , 
* . .: , 

and Vkm = v;k 

* =vx-.v 
'mk mlc mk 

Denot ins 

one can express (2.17) by the form 

n n n 
( R m - E )  (hi-E) - VEk[ ?J (h.-E)] 1 = 0. 

i= 1 k=l  (,';&I 

Defining a continuous function Y(&) differentiable to any order by 

(2.18) 

(2.18) states that m eigenvalues of @mfl@m are the m roots of Y ( g ) :  

n n n 

i= 1 k= i=l 
Y(E)  = ( $fm-E) r(hi-E)-vL[ (hi-E)] = 0. 

( L f k )  

(2.20) 

-E2 
Compare w i t h  (9.20). 



,n n Let us assume t h a t  t he  eigenvalues  of & are  arranged i n  non: 

decreasing o rde r  

r i e n  the  behavior of the func t ion  Y ( E )  i s  convenient ly  esp la ined  by 

cons ider ing  the va r ious  p o s s i b l e  cases .  

Case (1). None of the elements V 

d i f f e r e n t  from one another .  

In  this case,  from (2.20) we have 

T (Ili-hl) Y(hl) = - 

are  vanishing a n d  a l l  t h e  h .  a r e  mk 1 

n 2 
'ml i=z 

(2.21) 

. . . . . . . . . . . .  
n-1 

r) 

V ( h  ) = - VL TT ( h . - h  ) n mn i n  i= 1 

It i s  seen from (2.20) that Y(h ) 4 0, fur thermore the s i g n  of Y(hi,l) 1 

i s  d i f f e r e n t  f r o m  t h a t  of Y(hi). 

r o o t  between Y(h ) and Y(hi).  We a l s o  no te  t h a t  

Hence, t h e r e  e x i s t s  a t  l e a s t  one real 

i-1 

(2.22) 
> 0, i f  m i s  even c c. 0, i f  m i s  odd. 

Y(+") l i m  (-l)ml $! - 1 %  [ h i - c  c ++p' ml i=l 

Since t l i C  s i g n s  of Y ( - w )  and Y(hl) a r c  d i fEe ren t  from cach o the r ,  

t h e r e  e x i s t s  a t  l e a s t  one r o o t  which i s  srilaller than hl and i n  like 

rncinncr the diffcret i l :  s i g n s  of Y(h ) a n d  Y(+) guarantee  t h a t  t h e r e  
r, 



e x i s t s  a t  l e a s t  one r o o t  which i s  h ighe r  than h . 
cannot have more than  D. roo t s .  The above reasoning  g ives  t h e  fo l lowing  

s e p a r a t i o n  theorem. 

Theorem 2.1. I f  none of t h e  elements of Vmlc are ze ro  and a l l  of t h e  11 

a r c  d i f f e r e n t  from one another ,  (2.19) has m d i s t i n c t  r o o t s  s a t i s f y i n g  

the  inequa l i ty ,  

Furthermore (2.19) n 

i 

E l <  h l (  E 2 C  h e <  ..... < E n 4  h n C  Em . (2.23) 

Case 2 .  A l l  of Vmk a r e  convanishing a d  some of h .  are degenerate .  
1 

dn order  t o  f a c i l i t a t e  our d iscuss ion ,  we w i l l  adopt  t h e  nota-  

P i  t i o n  h , where the  s u p e r s c r i p t  p denotes  the  degree of degeneracy 

t h e  ith d i s t i n c t  l e v e l  i n  o rde r  from below, s o  t h a t  t h e  fo l lowing  ' 

r e l a t i o n s  are s a t i s f i e d :  

i i 

i 

p2 1 
= = h2 4 ... < hi 2 -  = hl L h2 = h2 ... P1 1 2 1 hl z hl - ... 

where 

a 
C p i  = n . 
i=l 

Then (2.19) w i l l  have t h e  form 

where ; I1 

i n  

(2.24) 

(2 .25)  

(2 .26 )  

(2 .27)  

( 2.28) 
J J  
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r 1  w i t h  f o r  k = 1, 

f o r  k L 2, 

(2.29) 

f o r  k = 1, 

f o r  k 1 2 ,  

and (2.20) t akes  t h e  form 

The d i f f e r e n c e  between (2.20) and (2 .30)  i n  t h e i r  form i s  t h a t  (2.30) 

has a n  a d d i t i o n a l  f a c t o r  # (h i -&)(p i - l )  and h .  1 remains as a r o o t  of 1 
i=l 

(2.27) wi th  t h e  degeneracy (pi-1) .  

app l i ed  t o  (2.19) t o  ? ( E ) :  

We can use  t h e  same reasoning  

and ob ta in  the  s e p a r a t i o n  theorem of t he  form 

where 

1 1 P1-1 1 
= E  El = El, E2 = E2, ..., EPl = E2 

It is seen from (2.32) that t h e  change ‘from Sn t o  ;P/e” 

reduces t h e  degeneracy of each l e v e l  by one and tK” has non-degen- 

erate roo t s  between t h e  degenera te  sets.  
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Case (3) .  Some of Vmk a r e  vanishing and none of t h e  hi a r e  degenerate.  

I f  an element, f o r  example, v is  zero,  we can w r i t e  (2.19) 
m1 

and (2.20) as 

I n  t h i s  case  the  eigenvalue h 
n *  

This  i s  due t o  t h e  f a c t  t h a t  flm and '2 U i j  81 a r e  non- in t e rac t ing  w i t h .  
i=1 

r e s p e i f  to. g, Since 

of fl" remains as an eigenvalue of f l m .  
j 

has n d i s t i n c t  r o o t s  as discussed in Case (l),  Y( E ) has m d i e t i n c t  

r o o t s  i f  t h e  jth roo t  of ?i( E ) ,  which i s  loca ted  between hj,l and hj+l, 

i s  d i f f e r e n t  from h and the following i n e q u a l i t i e s  a r e  s a t i s f i e d  

according t o  whether the jth root  of y( E )  i s  lower o r  h igher  than h 
j' 

1: 
&.. hn 4 Em , (2.36) El c hl < E2 ... ( E j  4 h 1 = Ej+l h j + l  $j+2 

o r  

El c hl E2 . .. < E j  = h j  4 Ej+l < hj+l 4 Ej+2 . (hn 4 Em. (2.37) 

I f  t h e  jth r o o t  of y( E )  happens t o  equal  t o  h 

t h e  l e v e l  h 

then one degeneracy of 
j' 

is added and g ives  the following sepa ra t ion  theorem' : 
1 

El hl < E2 . e  Ej,l 4 E j  h = E . . . < hn 4 Em. j j+l hj+l Ej+2 

(2.38) 

The 

one 

above d i scuss ion  can be extended e a s i l y  t o  t h e  case  where more than 

Vmk is vanishing.  
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Corollarv 2.1: 

t r u m  of -kern only when the corresponding V 

Degeneracy may be induced in t h e  l e v e l  l-i. in the spec- 
I 

is vanishing. 
mj 

Case (4). Some Vmk are  vanish ing  acd the corresponding hk i s  drgenerate. 

This is the combined case of Case (2) and Case (3) and (2.27) 

and (2.33) have to  be considered.  

2 cons ider  two d i f f e r e n t  cases; one, Wmk is vanishing,  and the other, 

Wf i s  not vanishing.  If W2 vanishes ,  for example, one can w r i t e  (2.27) 

In connect ion with (2.2'7), we can 

r, 

ml 
as 

and, as one has  seen  in the  d i scuss ion  of (2.33): degeneracy for the 

1 l e v e l  hk will remain and may be increased by one through the change 

from en t o  ern; and if Wmk i s  not  vanfshing,  then  one: can go back 2 

t o  (2.27) and it reduces t o  the  Case (2) .  

The four cases  d i scussed  above give a l u c i d  look a t  t h e  sepa- 

r a t i o n  theoren i n  connect ion w i t h  the degeneracy. 

Since (2.39) is a s p e c i a l  form of  (2.27) or (2.331, i n  

Chapter I11 we w i l l  not  consider (2.39) s e p a r a t e l y .  



CHAPTER 111 

BRACKETING FUNCTION AND FIRST ORDER 
ITERATION OF EIGENVALUES 

Using some of the  equat ions der ived i n  Chapter 11, we w i l l  now 

in t roduce  a func t ion  f (  & ) ca l l ed  b racke t ing  func t ion .  Only t h e  eigen-  

va lues  of ffm d i f f e r e n t  from those of fln a r e  bracketed consecut ive ly  

by use of f i r s t  o rde r  i t e r a t i o n .  

From (2.20), f o r  each root E of y( [), one ob ta ins  

f o r  t he  case  that a l l  r o o t s  hi a r e  d i s t i n c t  and a l l  Vmk a r e  non-van- 

i sh ing .  I n  case  there are degeneracies-  i n  the  spectrum of f ln one 

o b t a i n s  f o r  t h e  r o o t s  of y(&  ) a s  def ined  i n  (2 .31 ) :  

(h.-E) 
1 i=l 

and f o r  t he  case  V vanishes ,  one has ,  from (2.33) 
m j 



We note here that (3.lb) does not indicate the degree of degeneracy of 

hi and (3.1~) is independent of h.( the corresponding V2 is vanishing). 

In the later applications of (3.lb) and (3.1~) to the iteration pro- 

cess, where Q'm is the reference function of a one-dimensional manifold 

one has to note that there is no information about the degree of degen- 

eracy nor about the eigenvalue h, corresponding to a vanishing V 

' 3  mj 

m) 

In this sense, 

facts in mind, we will 

(3.la) in the form 

J 

the eigenvalue 

primarily work 

E f ( F )  

of h. is lost[81. 

with (3.la). One can write 

With these 
3 

(3.2) 

for an eigenvalue E, where' the function f is defined by 

..2 

for the continuous variable E .  Since . f ' (  1)  4 0 : 

(3.3) 

(3.4) 

& and f( E ) will bracket at least one eigenvalue E[']. In this sense, 

we will call f( & ) a "bracketing function." 

' It is interesting to derive the bracketing function by use of 

the partitioning process and we will introduce Lllwdin's[8'121 develop- 

ment of the partitioning technique in terms of an operator formalism. 

Let be a self-adjoint projection operator which defines a certain 

subspace S(m of order g in the total Hilbert space, so that 

. 



I 

( 3 - 5 )  
*3 s2= 8; vt = p; Tr(@ = g 

The orthogonal complement to the subspace S( 9) is defined by the 

operator P = 1 - #, which satisfies the relations 
P2 = P, Pt = P and ~9'2 = PCf = 0. ' (3 .6)  

Let us further introduce the operator T = T ( E )  by the 

definition 

where a # 0 is an arbitrary number. In the following we will often 

use the symbolic notation 

*31n practical applications of the partitioning technique, we 

In these problems the choice of an arbitrary subspace s(@) 
often utilize the bracketing property of the first order iteration pro- 
cedure. 
has some importance in connection with the convergence property of the 
iteration method. 
S( &) a one-dimensional reference manifold, and for g 2 2 , we will 
call it a mufti-dimensional reference manifold. 

In this sense for g = 1, xe will call the subspace 

P 
T = m l  (3.81 

It is seen that T fulfills the following relations: 

P ( &  - # f ) T = P  9 (3.9) 

Let us now consider the operator A defined by the relation 

A ( E )  = V + T ( t : ) f l 9 .  (3.11) 

Using (3.9), we obtain the identity 

P ( f l - t ) f i  = P(g-&)@'+ P ( R - E ) T R V =  P%P@ - PaCe /? E 0 a (3.12) 
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f o r  a l l  values of E .  Hence we have 

I f A ( E ) @  is a n  e igenfunct ion  o f e w i t h  a n  eigenvalue E, @ has t o  

s a t i s f y  the  r e l a t i o n  

This  i s  t h e  necessary and s u f f i c i e n t  cond i t ion  f o r  E t o  be an  eigen- 

value  of $4. Let  

e= f , 
1=1 

with  

L8i18j7 = dij 

Then t he  cond i t ion  (3.14) g ives  



From (3.16), we see that E has to satisfy the secular equation 

and further @$J cannot be arbitrary if Tr(@) = g 7 1, because the com- 

ponents C (6. I(6 7 must be eigenvectors of $?(E). 

(3.18) in more detail in Chapter V in connection with the multi-dimen- 

sional manif old. 

- 
We will work with 

J 

Let us now define an operator fl' : 

+e '= P*P , 

and its eigenEunctions Y;,  so that 

f l y ;  = hiYi 1 

then 

(i=1,2,. . . ,) 

(3.19) 

. (3.20) 

For the case g = 1, one can pur @ =  l Y 7 C  q I , with < 9)- 1, then 

(3.16) reads simply 



Assuming < f ' l @  > # 0, one obtains 

( 3.25) 

= <arx , ' f>  + < T l & P ~ ~ ~ ) ~ l c p )  

The introduction of (3.21) into (3.24) gives 

If we put 

- < L p I  R \ X ' >  , 'mi 
and 

then it is seen that (3.24) is of the same form as (3.3), which indi- 

cates that the function f( 6 ) defined by 

is a bracketing function of E. 

The first order iteration, using this bracketing p r o p c ~ : c y ,  w i l l  

I-(&\ L 12:1 
be convergent if \awl/ 4 I , and will be divergent i f  1 . 
In this connection, the choice of the reference function is imporLailt.  

In the treatment of a Hamiltonian f l  which can bc w r i t i c n  as 

the  sum of two terms, 

To reduced resolvent 

a= fl"+ V, it is convenient to i n t r o d u c e  2: 

and a reaction operator t through the relation,: 

( j . :1' I .  ' )  
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However, practically, i t  is  o f t e n  d i f f i c u l t  t o  work d i r e c t l y  

with t h e  reaction operator t(6>, and we are obl iged  t o  develop some 

method which gives a n  ope ra to r  t'(€) cha rac t e r i zed  by t h e  ineqml i ty  

and we have the fol lowing i n e q u a l i t i e s :  

A useful way to achieve  t h i s  end is  t o  in t roduce  the concept of t he  

I t  i nne r  project ion11r61 as discussed i n  the  next chapter .  

.I+ 

dornaia of A and B. 
A S  B means < Y l A f Y >  C (YiBI??) f o r  every UI i n  the C O ~ O R  



The opera tors  T 

t r y  t o  f i n d  a p r a c t i c a l  method f o r  ob ta in ing  lower bounds. 

By using t h e  r e l a t i o n s  TV = Tot and T = T 

and t w i l l  hence depend o n & .  Using (3.26) we w i l l  0 

-t TotT Lbwdin has 
0 0'- 

derived'" t he  fol lowing t ransformation f o r  t h e  o p e r a t o r  ff 

S u b s t i t u t i o n  of t h i s  expression i n t o  (3.26) g i v e s  

I n  connect ion with t h e  s o l v a b i l i t y  of t h e  Schrudinger equat ion  

f l o p  = E o T o ,  i t  i s  convenient t o  t ake  yo as a r e f e r e n c e  funct ion,  

s i n c e  f o r  t h i s  case (3.30) simply reads 

I n  p r i n c i p l e  we can o b r a i n  the  upper bound & t o  any d e s i r e d  
0 

accuracy and by use of the bracket ing  property,  (3.30) o r  (3.31), w e  

can es t imate  a lower bound 1,; 



CHAPTER IV 

THE ONE-DINENSIONAL REFERENCE MANIFOLD 
AND LOIEK BOLVDS 

Letwdin [6y71 has developed a method f o r  r h e  e s t ima t ion  of 1.ower 

In bounds t o  the  energy eigenvalues  of t h e  Hamiltonian f l= H*+ V. 
t h i s  method, i n  o rde r  t o  avoid t h e  order ing  theorem of the " In te rmedia te  

Hamiltonian" r13y141, the bracket ing  theorem as w e l l  a s  the  concept of 

11 i nne r  p ro jec t ion"  is w e d .  

L e t  A be a p o s i t i v e  d e f i n i t e ,  s e l f - a d j o i n t  opera tor .  Denoting 

t h e  eigenvalues  and e igenfunct ions  of A by CL. and U.. r e spec t ive ly ,  
I 1) 

one o b t a i n s  t h e  spectral r e s o l u t i o n  

with ai 0. 

Let  us f u r t h e r  d e f i n e  a n  opera tor  AT by the  re la t ion 
1 

then t h e  ' ' inner p ro jec t ion"  of A, A ' ,  i s  def ined  by 

(4.1) 

(4.2) 

R' where Qn i s  a Hermit ian p r o j e c t i o n  operator on a l i n e a r  manifold F 

which i s  spanned by a set: of l i n e a r l y  independent func t ions ,  

(4 .4)  

21 



Denoting t h e  a d j o i n t  of P by 

(4.6) 

one ob ta ins  the  corresponding me t r i c  mat r ix  

A = #+j€ = < $ I f )  . 

A t y p i c a l  element oE i s  def ined by 

A le1 = <fk l fL>*  (11 .'7) 

11 
With th i s  n o t a t i o n  one can de f ine  a Hermitian p r o j e c t i o n  opcrator Q by 

Qn = If $+ E3 \ fE > <% , (!I.:;) 

w i r h  the  proper ty  

t 
Q ~ Q ~  = qnr  Qn = Qn and Tr(Qn) = n . 

Thcii (4.3) w i l l  have t h e  form 

1 
' ( f lA; :  . (IC. l i i )  

1 
A '  = A??\$>&- 

i n t o  thr. s e t  $ Luid n+l  If we incorpura te  one more f u n c t i o n ,  s a y  f 

dc' i iote t he  corresponding p r o j e c  :.ion o p c r a t o r  by Q 
il-t 1 w i t h  the p r o p d r t y  



C91 then  one ob ta ins  

114-1 n n nt-1 - Q Q = Q Q  - Q n  

Equations ( )+,9) ,  (4.10) and (4.11) together wi th  the  relatio:iij 

g ive the  i n e q u a l i t y  

or 

i- 
Q~ = Q ~ Q "  = Q~ Q" 2 0  , 

(1-Q ) ( l - Q " + l )  2 0  , n-i-1 + 

nt-1 n ( Q ~ + ' - Q ~ ) ) + ( Q  -Q ) 20 

4.1;; j 

( 4.. 1 ' t . )  

Thus, by en la rg ing  t h e  space F t he  "inner pro jec t ion"  A '  approachL>s X. n J  

I n  the  fol lowing i t  is  convenient t o  in t roduce  t h r e e  more mani -  

0 -  
f o l d s  2 t ( gl,g2,. . . ,gn),  07 E (hl Jh2,. . . ,hn) and J =  ( j I J j 2 , . . *  d,,! 

def ined  by the  r e l a t i o n s  

1 1 1 & = A-2 8 , $ = ,4-2 and $ z z  A-F(€-R'')  jj . 

S u b s t i t u t i o n  of (4.16) into (4.3) g ives  

A'  i= AI$>A1< 8 / A  

w i t h  

w i t h  

( C  .. .iE,j 



The " inner  pro jec t ion"  i n  t h e  form of (4.10) is c a l l e d  by LB~din'~' t h e  

"standard inne r  pro jec t ion"  whereas (4.17) and (4.19) are called the 

"Aronsza j n  p r o j e c t  ion" and the  "Bazley p r o j e c t  ion," r e s p e c t i v e l y  . 
Since  the  "inner pro jec t ion"  of t h e  form (4.21) was first int roduced 

by Lbdin[6'151, w e  may c a l l  i t  t h e  "Lbwdin projection.'' For conven- 

i ence  w e  wilf also ca l l  t h e  manifolds &, 8, 02 and J the "s tandard  

space," the "Aronszajn space," t h e  "Bazley space'' and the " L h d i n  space,'' 

0 

r e s p e c t i v e l y  r73 . 
According to  (3.32a), the  two q u a n t i t i e s  eo and E,,  which 

bracke t  a t r u e  eigenvalue E are connected by the r e l a t i o n  

where &, i s  a n  upper bound t o  E and 

more i f  one can e v a l u a t e  & ' which i s  smaller than E , :  1 

E is  a lower bound to E. F u r t h e r -  
1. 

then  E '  i s  a lower bound t o  E. 

t h e  opera tor  t i  which i s  smaller than t .  

can always obta in  t' by means of an " inner  pro jec t ion ,"  

This  can be accomplished by i n t r o d u c i n g  1 

If t i s  positive d e f i n i t e  we 

1 1  
t '  = t'%QntZ . (4.24) 

L6wdir-1'~' has shown that, even if t is not p o s i t i v e  d e f i n i t e ,  we can 

form t' such t h a t  t' f t for a pos i t ive  d e f i n i t e  p e r t u r b a t i o n  V. 



Consider an energy l e v e l  of ff whose upper bound E sati .s€ies 
0 

t he  i n e q u a l i t y  

Eo < E O  f (4.25) P++1 

where Eo i s  the  (p+ l )  eigenvalue of Go from below. Then t h e  

choice  of an Aronszajn space f o r  the inne r  p r o j e c t i o n  of V so t h a t  

t h  
P+l  

i s  s u f f i c i e n t  t o  s a t i s f y  t h e  i n e q u a l i t y  t ' (  E,) 5 t (  Lo), 

where t '  = V' 4- V'TV'  (4.26) 

0 i f  8 inc ludes  a l l  the  lower ly ing  unperturbed e igenfunct ions  Y 

r e s p e c t  t o  Ep+,.* 

w i t h  i 

0 Hence t h e  minimum requirement f o r  8 is g iven  by 

This  choice  of t h e  inanifold i s  conveniently applied to t h e  problems 

where V$ can b e  expressed.  i n  terms of a known f i n i t e  number of e igen-  

f u n c t i o n s  of 161 

One example of t h i s  case w i l l  be  g iven  i n  Chapter VI. 

Bazley and F0x[17~1a1 have d iscussed  t h e  similar cases i n  

connec t ion  w i t h  t h e i r  s p e c i a l  choice of l i n e a r  manifold.  



CHAPTER v 

THE MULTI-DIMENSIONAL REFERENCE MANIFOLD 
AND LOWER BOUNDS 

The main difficulty in the use of (3.34) or (3.35) for the 

calculation of lower bounds is that, for an upper bound L greater 

than the first excited state Eo of zo, the generalized reaction 
opertor t(E ) is not positive definite. 

vent this difficulty by use of (4.26), its applicability is rather 

limited due to the appearance of the reduced resolvent 

These two difficulties and the ordering theorem are avoided hy use of 

0 

2 

Even though we can circum- 
0 

T in t. 
0 

the multi-dimensional reference space in the partitioning technique. 

The general outline of this partitioning process is introduced in 

Chapter 111. 
tu 

Let us consider the operator and % defined by 

and 

where w i s  a Hermitian projection operator defined in (3.5) with 

Tr (e) = 8.  

values of x( e) will change continuously with E except at some singular 

c 4 

Since T(&) is a function of& so is %and g, and g eigen- 
ry 

points. A t  this point, it is convenient to consider an eigenvalue 

26 



problem of the form 

(i=1,2,. . . ,g) , (7.3) 

It is seen that (3.14) is a particular case of: (5.3) with both E and 

equal t o  E which is an eigenvalue of 

Using the property of the complementary projection opera tor  P: 

P = 1 - V  

we see that 

and any function in S ( P )  *5 is an eigenvector w i t h  an eigenszilue Z ~ T ' O  

for all values of E ;  this case is of little interest in connect ion 

with the partitioning technique, and we will confine ourselves t o  S(a 
so that 

Mi = 0. { 5 . 'I.) 
Therefore for eigenfunctions of %e which are in S ( P ) ,  this partitioning 

process fails to give the corresponding eigenvalues. 

4 

Theorem 5.1. If & is equal to one of the eigenvalues of $Q (E) '  

i-e., = &, then ci is an eigenvalue of 8. 
Proof: Starting from (5 .3 ) ,  one obtains 

51t is convenient to refer t o  the subspace associated w i t h  the 
P as s ( P ) .  



th is  i n d i c a t e s  that (S-t T(E?~>$?@-)+ is an e igenfunct ion  of 9 
w i t h  a n  eigenvalue Ei. Q.E.D. 

Furthermore from t he  r e l a t i o n s  (3.17) arid (3.18) there follcrws: 

Corol lary 5.1. 

of I' 9 P, then E i s  also 

If E is  an eigenvalue of ff hut nor an t?igcnvalue 
w 

eigenvalue of $-!(E). 
cw 

In Figure  1, the  re la t i .on  between the eigenvalucs of fl( E )  

and those of f l  a r e  schematically i l l u s t r a t e d  and i n  o rde r  to cxp la in  

t h i s  f i g u r e  we w i l l  discuss the as.ymptotic behavior of the eigenvnlucs  

of f l (  & )  as &varies  from 
rr/ - Q) t o  m. From (3.22) orre obtains f o r  

z 

%(&) = Q w8- 
= 8 ( R  t =T&,%e)s 

where $-fL P f l  P and "$.f)'Yi = h.Y! 
1 1  

(5 .3)  



Fig.  1. The graphical  c o n s t r u c t i o n  of t h e  
eigenvalues of BQ . 

E l ,  E*, E3, Eb a n d  E.. deno te  the e igenvaiues  of poi; 
H b b  ' and  h a, 4, and h., denote  t h e  e igenvalues  of 

2 

and e and e2 denote 3 the  eigenvalues of &)cl. Tht' author z i s  indebted to Professor  P. 0 ,  Lswdin  f o r  

showing t h i s  diagram. 



It i s  sometimes more convenient t o  consider this p a r t i t i o n i n g  process  

i n  terms of a s e c u l a r  equation of a finite dimension and l a t e r  extend 

t h i s  to the  i n f i n i t e  H i l b e r t  space to nlatch with the  operator f o r n l a l i s m  

shown above. 

= 1qj1,8,, ..., m 1 i.n s If one uses a n  orthonorrml basis  l 6  
expressions (2 .5 )  and (2.G), one ob ta ins  t h e  matrix equation 

(5.10) 

(5.11> 

Let us now "part- i t ion" the basis i n t o  t w o  s u b s e t s  (a) and (b) and 

denote  the  a s soc ia t ed  subspaces by S ( a )  arid S(b), r e s p e c t i v e l y .  

matrix D-jl and the vector CC may be wri . t ten i n  the form 

The 

and in s t ead  of (5.9), t w o  equa t ions  result:: 

If the eigenvalue E of kfl i s  d i f f e r e n t  from t h e  e igenvalucs  of Pobb2 

( 5.14) gives  

6, P ( E P b C  - W b b ) - '  D d b a  6 4 .  ( I j . l . ? >  



Substitution of (5.15) into (5.13) Leads to the relation 

where 

If the inverse of (E l,, -0-0 bb) exists, (5.15) gives the  r e l a t i o n  

between Ca and Cb and if (5.16) can be solved, Q: can be obtainctl by 

(5.15). 

eigenvalues of this partitioning device fails to give t h e  eigcn-. 

functions as well as the eigenvalues, and in this sense the eigenva!31e 

is lost (see the statement after (5.4)). 

b 

However for an eigenvalue of which is equal to one of ~ E i c  

bb’ 

Equation (5.16) has exactly the same form as (5..3), w i t h  t h c  

understanding that S(b) is extended t o  the Hilbert space of infinite 

order orthogonal to S(a) .  Transforming the matrix by means of 

the unitary transformation 

pa, : 0 ( - * ;  - - - - -  1 I 

t 1 U b b  

where the matrix ubb is composed of t h e  e igenvcctors  of D*O one bb’ 

( 5  1.8) 

obtains the equivalent matrix m’ o f  the form shown in (5.19) 



or 

where t h e  matrix (E I,, - b*Fbl,)-' has the diagonal F'orm w i t h  <?n 

tl: for tIie i element.   qua ti on (5.21) i s  equiv;.leni 1 
element r r m  

1 

t o  (5 .8) .  

It is  seen f r o m  (7.8) and (5.21) that t h e r e  arc t w o  typt:; of 

P f l P ,  r e spec t ive ly .  

of -;eP and P Z.P I' are e l imina ted  here. 

However the  conurnon eigenvalucs, i f  t h ~ y  ex is i ,  

rc/ 

In orde r  to examine t h e  behavior of the eigenvalues of $?(e) 
(or 911 ( E ) )  qualitatively, an example i s  considered where t h e  d i m w -  

s i o n  of S(a) i s  two and the dimensi.or! of S ( b )  i s  three. The op"r"C00' 

formalism and t h e  matrix formalism w i l l  be used intercl!angcxibly 

an 



and denote the eigenvalues of W by e and e (with e 4. e.+,) and 

those of Wbb by hl, h2 and h 

aa 1 2 1 L’ 

respectively. 
3” 

Assuming S(a) is spanned by 8 and 8 1 2 and Sjb) i s  spani icd  by 

G3? f14 and 8 (5.21) has t h e  form 
5’ 

w i t h  

and 

Note that hl in Fig.  1 is related to g’ by 
. jj 

Defining 

(Lj.26) 

In what follows,, the horizoncal asymptotic behavior of the 

( E )  is d i s c u s s e d  in Case (1) and Case ( 2 > ,  whereas 
c 

eigenvalues  of 

the vertical behavior is studied in Case ( 3 ) .  
aa 



I where J i s  a mat r ix  each element of whicii goes t o  zero  as - 
& *  

t h a t  i f  operator:; A 3 r d  R bounded 

from below have a common domaill  and s a t i s i ' y  the  :ncquaLity 

C 13,Lh 6 J It i s  w e l l  known 

A q B  , (5.28) 

then  t h e  eigenvalues  of A are smller than  t h e  e igenvalues  of I3 i n  

o rde r  from below. Furthcrrnore, w e  can  denotc  the  i n e q u a l i t y  of the 

matrices and D3: 

A < B  ( S - 3 1  

i f  every diagonal  element: Aii of i$l is less than t h e  corresponding 

d iagonal  element of Rii of It3 , i .e.,  

A C R i i  ii 
(5 .30 )  

f o r  every a r b i t r a r y  choice  of bns:is i n  tha t  domin .  
c 

'The c h a r a c t e r  of &la,(&) as a fui ic t ion of E is  d e t e r m i m d  by 

p-a'..(&). Since  the numerator of every di.agonal. eienient i s  g r e a t e r  

than  or equal  t o  zero,  f o r  a n  a r b i t r a r y  basis chosen i n  S ( a ) ,  t h e  s i g n  

of each diagonal  element i s  determined by the s i g n  of corresponding 

denominator. 

Case (1). - 03 (&<hl 

For t h i s  case every diagonal  element: oE m*(rj i s  negat-ivs 



I 
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for an arbitrary choice of basis in S ( a ) ,  and the inequality 

I 

is satisfied, ( E )  for a n  

arbitrary choice of basis in S(a) becomes smaller as E increases its 

value in this range. Consequently, the eigenvalues of H(&) arc  

decreasing monotonically from their corresponding horizontal asymptotes 

el and e 

Furthermore every diagonal element of a 
3a 

c 

as one increases the value of E .  In this sense the hori- 
2 

zontal asymptotes are upper bounds to the eigenvalues of 

for € 5  hl. 

baa(E) 

Case ( 2 ) .  h5C < i- 00 

1 

For this range of & ,  every diagonal element of Ha,(E) for an 

arbitrary choice of basis in S(a) i s  positive, giving r i se  tu the 

i nequali ry 

c 

(5.32) 

- 
and the eigenvalues of Ha$&) are decreasingly monotonically and 

approach their corresponding horizontal asymptotes e and e respec- 

tively. 

values of YM,,(c) fqr E . >  i ~ ~ .  

1 2’ 
Hence the horizontal asymptotes are lower bounds t:o the eigerl- - 

Case (3). 6 approaches hk(E-+\). 

In order to facilitate consideration of this ldnltiag case, the 

operator formalism expressed in (5 .8)  w i l l  be  used: 



where 

p re sen t  example, T r ( P )  E 3. Rearrariging (9.8) one  o b t a i n s  

Defining the operator 

and denoting its c igenfunct ian  arid e igcn \a lue  by and 4,. 

one ob ta i n s  

Combination of (5.37) and (5.38) g '  1ves 

or 



37 

Hence Y I k  i s  a simultaneous e igenfunct ion  t o  $f and P$f?  W ; : ~ I  t h e  

e igenvalue  h 

E hkJ t h e  p a r t i t i o n i n g  technique fai.ls. Furthermore 11 i s  i io l o q ~ 2 r .  

a s i n g u l a r  po in t  of (5.34) and (5.35), accordingly t h e r e  i s  120 ~ s y ~ p -  

t o t i c  behavior  a t  E =  hkJ and the eigenvalue is  lost i n  :hi:; :,ciise. 

Therefore  it w i l l  be assumed t h a t  o f l Y V k  # 0 .  

t t h e r e  e x i s t s  a t  l e a s t  one non-zero eigenvalue . ‘rlie e i g e n v a l u e  

Since the inverse  of P ( 6  - fl>P does not e x i s t  f o r  k‘ 

h 

Under t h i s  a s s u m p t i o n  

s:, f k 

whether i t  is  zero  o r  non-zero, may be degenerate;  1iowvc.r~ one c a i ~  

always diagonal ize  $ in S ( & ) .  

I n  o rde r  t o  f a c i l i f a t e  the following consideracion, i e t  tlie 

k 
subspace S( &) be dividedr191 i n t o  or thogonal  subspaces S ( &  } and 

S ( P b )  sccording t o  t h e  two d i s t i n c t  e igenvalues  of k 3  

B 

k such  t h a t  
)-I k’ 



. 

and 

where 
k v=&+ 0 - b  > 

Introducing the r e l a t i o n s  { 5.40, ( 5  .&I) a.nd (5.42) i n t o  (5 .  j b )  , 

where  

where ,b is an  a r b i t r a r y  non-zero number. 

I n  the  fol lowing we w i l l  simply u s e  rhe symbolic nolration 



- 
I n  order  to observe the asymptot ic  behavior of 6 $ f f i  a , ~  € approachus 

hk, one can con t r ac t  8 f l f l w i t h  respect t o  the subspace S(@ ) ax! 
- I< 

b 

k 
S (  ea), r e spec t ive ly ,  using (5.43) and (5.44j) one obtaiils (cf.(3.1’:)) 

where 

A s  & approaches hk, 2 
opera tor  dace> go to zero. 

becomes enormbusly large,  which  nakcs t n e  
k 

Hence one has the resul t : ;  

These g ive  the  theorem t h a t ,  if & approaches one of t he  eigcnva1ac.s OA- 

P#P, say h , where hk is  not  an eigei:value of f’f, t h c  n. t~il;enval1lt!:;, 

k 
where n = Tr( 41, of 6 $?&approach the eigenv=.iuti:; of 0: 1) ~ 2 ( r f ) @ - ~  

i\ - k 

b 

and the n eigenvalues, where II = Tr( ot), of 8 f l ~ b t 3 c o r n e  i n E i n i t e  a a 

<!t;/ $-t Ce %e \ uk, I ---- wi th  t h e  order of magnitude * -  I . 



c o n n e c t i o n  w i t h  (3.1tj). 

,us 



t h e n  

#- 

E .  .C fi 
I 

wiicrc E- is the  ith eigenvalues 

t i n u a l l y  Erom E t o  E each € k k - l  i 

i 
N -L4 

which  i s  grcatc'r. tkui k - 1 '  rind i t  wil.1 f i n a l l y  reach t h e  point  where 

is  equal t o  1. Then by theorem 5.1, the 1 zt: this p o i n t  ( e  ~ 2 ,  ) Ek-1' ,i- 1 
n/ 

i s  an e igenvalue  of ;FQ, however (SL E 

asswnption t h a t  E = E l  i f  k > 1. Q.E.D. 

= E k 1  
and this con:.ratlicts tile 

N 

k 

One may assunie t h a t  the Hamiltonian fl can be wr i t r t . n  j n  t h c  

form 

e= e f V  

where e has known eigenvalues and e igenfunct ions  ,ind '4 i:, i;os~i.i~:c 

definite. It is f u r t h e r  assumed t h a t  G o  has discrete e n e r g y  I cvc l s  

below i t s  cont inuous spectrum. The corresponding o r t l i onorm~~~i i zcd  

e igenfunct ions  are denoted by !Ifi, s o  that 
0 

I f  t h e  projection operator i n  (3.5) is associated wi th  Khe fui;c.r-ioi-is 



the  i n t r o d u c t i o n  of (5.61) i n t o  (3.14) leads t o  the  form 

Then using the operator identity 

( A + - '  = A -1 + A%(A-B)-'  (5.615) 

i t  can be shown"' that 

-1 ..-I (5.6*{) - t " V  

-1 provided V e x i s t s .  

The condi t ion  which makes T ( E )  negativt. dcit'init.c ~1.11 be  Che 
0 

suf f ic ienL c o l i d i t i o n  l o r  t-'(&,) anc1 t ( ~ )  to ~ ) c  p o s i t i v t .  dcf in i .Lc .  

the  v a r i a b l e  

r e  l a  t ion  

iI 

i s  below t h e  continuous spectrum of fl" with thc 

then T ( c )  i s  nega t ive  d e f i n i t e  i f  one u s e s  t he  p r o j e c t i o i i  oper,tor 

d c f i ne d by 

0 



I 

t h e n  

I 



(5 .75)  

1 rrlaltes t h e  rcnclrion opera tor  t ( E  } p o s i t i v e  d e f i n i t e .  

func t ions  of  %' assoc ia t ed  w i - t h  the cigcnvalucs less th;ln t ke UilpC'r  

bound 1 a r e  includecj i n  t11r s e t  { y 1 , y 2  ,..., Y.' ,..., Y"]. 

d e f i n e  (8 by the r e l a t i o n  

!iei;cc ali .  c i s e n -  
0 

0 0  0 
~ t 3 t  us 

0 P s 
1 

For this case the r e l a t i o n  i n  (3.Fr1>) m y  be r e p l a c e d  by 

D e f i n i n g  &; by 

and n o t i n g  t h e  relations (Lj.'(2) and (5.79) one obt,cins the- r o l l o w l n g  

incquality: 



Since # is n o t  known, one m i n b i z e s  t he  ope ra to r  fl", 1 

ir, S ( $ 3  to ob ta in  some value less  than  E.; . 

Denoting the  lowest ei.genvalue of f f "  i n  Si@-) by f e y ,  one 

ob ta ins  

&;:;E; . 

. . .  k 

i .  

( 5.83) 

Then i t  is  seen t h a t  

Hermitian mat r ix  

&" is given by t h e  lowest e igenvalue of the 1 

Combining (5.79) and (5 .83)  one ob ta ins  

Th i s  method w i l l  be applied i n  L%apter VT.1 i n  t h e  estimation of t he  

iower bound t o  the  ground s t a r e  energy of two-electron isoe1ectroni.c 

s e r i e s .  



CHAPTER VI 

THE STARK EFFECT I N  THE RIGID KOTATCR 

For t h i s  case O K A ~  o b t a i n s  

where 



If Q is eigenfunction of w’, then  

T = Q  a ( 6 . 6 )  

The wave equation for the rigid rotator  consisting of two mass 

which are separated by fixed distance R, is 1. 2’ points m and m 

where W is the r o t a t i o n a l  energy and M i s  the reZuced mass of ml and 

m2, i .e.,  

Let 

and 

where w is  the Hamiltonian In dimensionless w i l t s  and E 6 is the corre- 

sponding energy. T f  Y j m  o denotes the rronnalized wave funet.’,un giver, by- rxt] 

T where P’ (cos  0) is  the  associated Legendre polynomial, ther. ( 6 . 7 )  reeds R 
simply 



The r i g i d  r o t a t o r  of d i p o l e  moment p i n  a un i fo rm electric: 

f i e l d  F i s  cha rac t e r i zed  by  the wave e q u a t i o n  of  the form 

with 

and K = ( ~ u F M J ~ ~ ) / % ~  (6.14) 

I n  o rde r  t h a t  t h e  pe r tu rba t ion  V i n  (6.2) s h a l l  be p o s i t i v e  dc . f i i? i tc ! ,  

we s h a l l  w r i t c  

7 

v = K ( 1  $. cos 0 )  , (6.16) 

and 

u = 1 + c o s a  . (6.17) 

Then t h i s  division of f l  i n t o  a n  u n p e r t u r b e d  arid 3 per turbed  part 

g ives  

$f = %to 4- RU (6. i S j  

w i t h  
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For t1ii.s; c a s e ,  Lhc Schr&iinger equat ion rearis 

I 

This  equat ion  i s  e a s i l y  seen t o  b e  sc?pasabJ.e w i t h  respect to t h e  var i -  

ables 0 and @, so w e  can write .the eigenfunctfon in t h e  product form 

% With 

an3 (6.22) 

whcre PT(@) i s  ar. assoc ia t ed  Legendre polycomial .  
>J 

Since  the  space w i t h  which w e  are concer:icd can be  subdivided 

according t o  the  value of m, we can  t r e a t  the r;roblem sepa ra t e ly  for 

each subspace. 

t rary;  however, i n  o r d e r  t o  rnczke the t i r s t  order  

The nor;nalize!d reference function 8 i k i  ( ( ; . 7 - )  LS a r b i -  

i t e r a ~ i o n  a i  <&“I) 
[6] convergeut,  the  conditio= 

must be s a t i s f i e d .  The l e f t  s i d e  of this i nequa l i ty  approaches zero 

as K approaches z e r o  f o r  a f i x e d  refcrcnce funcLion only i f  i$ i s  a n  

e igen func t i an  of x0; t l i e re fcrc  i t  qcenis re3soriable to r-iake this 

3-8 
. Except f o r  the case rn = C y  w e  have doub ly  degenera te  e igen-  

states, so we w i l l  cons ider  on1.y the abso lu te  value of m. 





8 .  = 1 
1. 

f o r  i. = l+I- :n ,  

(6.29) 
f o r  i = , t - in ,  

I n  o rde r  t o  have a t  least  one non-zero ~ l e m e n t  f o r  ti a s  we 

can s c c  from (6.291, 11 must be a t  least  as l a rge  a s  (2-m); c t h c n i i s e  

i' 

& = ,8(,!!,-+1) - K , 6 3 0  

which is t r i v i a l .  

For the  c a l c u l a t i o n  of inatrix elements of D J  wc' corisidcr 

Let 

where 

L'sing (6 .28) ,  we o b t a i n  

w i t h  



Note t h a t  t h e  reason D vanishes  f o r  c e r t a i n  values of i is that F is 

ortliogonal t o  $. 
i i 

Then, the non-vanishing mat r ix  elements of E3 are  
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Equations (6.29), (6.30) and (6.40) g ive  u s  i-he necessary 

a a t r i x  elements for c a l c u l a t i o n  of lower bounds expressed by ( 6 v 3 ] .  

It is  e a s i l y  seen that 

I f  we change the Eamiltonian i n  (6.13) to 

= w - K cos t3 (6.41) 

w e  would expect the same r e s u l t  s i n c e  w e  only reversed  t h c  u n i f o r a  

e l e c t r i c  f i e l d .  The a lgeb ra i c  i d e n t i t y  of these ttio cases  has bee3 

demonstrated as a partial check on t h e  a lgebra .  

Upper and Lower Bounds for  the R ig id  - ~ o t a t o r - - N u m ~ r i c ~ ~ l  Resul ts  

The entire calculation was done on the 3BM 709 at t h e  Univcr- 

s i t y  of Florida Computing Center. Upper Bound ene rg ie s  wcxe f i r s t  

obta ined  by the Rayleigh-Ritz v a r i a t i o n a l  method u s i n g  siibroutirie 

Givens? ( s i n g l e  precision). 

upper bound and lower bound were so c lose  tha t  5.r: w;?s d i f f i c u l t :  ro say 

which was lower, the upper bounds were re f ined  us ing  s double-prec is ion  

i t e r a r i o n  methodx1! and t he  r e m i n d e r  of the  calculation WP.S also 

carried out i n  double p rec i s ion .  

In  order  t o  c l a r i f y  the  cases where r:hc 

Yg"Eigenvalues and Eigenvectors  by the Givens Pletbad," Q u m t m i  

"'OC. E .  Reid, "Eigenvalues by Luwdin's P a r t i t i o i l i n g  I?lithodJ" 

Chemistry Program ExchaRge, QCPE 12C ( 1963). 

QCPE 1 4 C  (1963), modified for  doub le  p rec i s ion .  



Except f o r  t h e  lev21 m = 0,  a l l  the  o the r  l e v e l s  are degencra tc .  

However, the  Hamiltonian % commutes w i t h  L,7 = -- ’’ -- ’ t h e r e f o r e  m e  i a @ ’  
can sepa ra t e ly  so lve  t h e  energy eigenvalue problem f o r  each subspace  

S f o r  a given va lue  m of L . Calcu la t ions  for t he  f i r s t  s i x  subspaccs 

( S o  t o  S ) have been carried out  f o r  t he  twenty lowest e igenvalxes  i n  

each subspace wi th  t h e  p e r t u r b a t i o n  c o e f f i c i e n t  K rangiiig from 0.1 t o  

1.0. 

m z 

3 

I n  Table I, upper bounds E = E and lower bounds E = Li of 
li 0 L 

energy e i g e n v a l w s  a r e  g iven  t o  s i x t e e n  s i g n i f i c a n t  d i g i t s  f o r  t y p i c a l  

choices  of K and m. 

per turbed s t a t e .  

The eigenvalues  are l abe led  by the  ,!!. of t h e  un- 

NU i s  Che number of b a s i s  func t ions  used f o r  f ind ing  upper 

bounds ( t h e s e  func t ions  a r e  the  normalized s p h e r i c a l  harmonics Ym, m 

m m  ni 
’mi-,, ... J” m t - N f l  ), and N L i s  the  number of b a s i s  func t ions  ‘m’ ’mi-1.9 

m 
0 . .  ’n*N -1 ) f o r  t he  Aronszajn space.  

L 

This  method of eva lua t ing  lower bounds, us ing  the  b racke t ing  

proper ty  of (6.1)) r e q u i r e s  good upper bounds, and t h e  u p p e r  bound?; are  

improved by inc reas ing  the  nunber of b a s i s  functions N used i n  t h e  

v a r i a t i o n a l  c a l c u l a t i o n .  The r e s u l t s  i n  Table 1 i n d i c a t e  t h a t  f a i r l y  

U 

good upper bounds are g e n e r a l l y  obta ined  by t ak ing  N 

orde r  t o  o b t a i n  good lower bounds, we have t o  en la rge  the  .Aronszajn 

= h’ 1- 5 m  In U 

space,  and we can  see from the  results i nd ica t ed  i n  Table  1 that i n  

t he  present  c a s e  t h e  dimension of t he  Aronszajn space NL i s  s u f f i c i e n t  

t o  g ive  good lower bounds provided N = a + 5.  L 
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TABLE 1 

UPPER AND LOGIER EOLTDS FOR EIGENV:?LI!ES FOR 
THE STXX EFFECT IX h RIGITI KOTA'i'CR 

m =: 0, K = 0.5 

2 N. 7 N, E,, and E, 
_1- -I 

a 

0 

i 

2 

3 

r: 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

5 

6 

7 

a 

9 

10 

11 

12 

13 

14 

15 

1% 

17 

18 

19 

20 

20 

5 

G 

7 

8 

9 

10 

11 

12 

13 

11: 

15 

16 

17 

18 

19 

20 

20 



17 

18 

19 

20 
20 

20 
20 
23 

20 
24 

20 

K = 1.0 m = 1, 

5 

6 

7 

8 

9 

10 

11 

12 

13 

5 

6 

7 

8 

9 

10 

5 

6 

7 

a 

9 

10 

11 
11 

12 
12 

13 
13 

14 
14 

15 

16 

17 

15 

16 

17 



m * 1, K = 1.0 

5? 

TABLE 1--Continued 

R NU NL EU and E L a  
115 

15 

16 

17 

18 

19 

20 

18 

19 

20 

20 

20 

20 

20 

18 

19 

20 

20 

20 
23 

20 
23 

20 
24 

210.00@888386502 
210 .oOQ5888386500 

240 *00051593586?9 
2k.o .0005159358681 

272.0004557 b.72937 
27~.0004557472681 
306.0001305 4860207 
30G. ~004O5~60206 
342.0003630874514 
342.0003630874365 

~80~0003269927098 
380. om326935 81 56 

342.0003630874366 
380.0003?74705 419 

b20.0062377999262 
k0.0002179895039 
420.00029~&~43069 

m = 3  K = 0.7 

3 

4 

5 

6 

7 

8 

9 

10 

9 

10 

11 

12 . * 

9 

10 

11 

11.99319648972468 
11.39319648972467 
1g.gge88486422010 
i g  .99888486422010 
30.00020901290087 
30.00020901290086 

k ,00053019645271 

56.00057406214887 

42. WO5 30 19645 272 

56.000574O6214888 . 
72*00053726930379 
'?2.0005372&50875 

9.00048803806256 
go .0ooJ.r8038806258 

110 .OOO&!3O27 3525 
110.000&!30~3~23 12 



TABLE 1--Cont i.nued. 

- 

* I  NU - NL EU and E L a  
11 13 132.0003p211 j 156 

13 132.00037 121 15 184 
12 14 156.0003262415718 

14 156.0003262415716 
13 15 182.0002877983~3 

14 16 210.00O25~0~765 13 
2 10.0oO25 5 07'765 1 1 

17 240. 0002272QT(43 46 
240.0002272074,145 

15 182.0002877983 402 

16 
15 

17 
16 18 272.0002033918627 

18 272.0002033918626 

306.0001829503519 17 19 
19 

18 20 342.0001653171585 
20 3k2.0001653172584 

19 

20 20 420 .co01367024~96 

306.0001829503~20 

20 38O.000150027~721 
20 380.000 15O0277720 

20 420.0001367024584 
21 20 U2.000125 1239667 

20 h62.0001250~04234 
22 20 506.00273361+95 416 

20 506.000091~02348 
u - 5, K - 1.0 

5 5 
5 

6 

7 

6 6 

7 7 

8 8 
8 

9 9 
9 .  
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TABLE 1 --Cant inued 
--.I_ - _I- -- 

m = 5, K = 1.0 -- - 
a 

L E and E NU - NL u a 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

10 

31 

12 

33 

14. 

15 

16 

17 

18 

19 

20 

20 

20 

20 

20 

IO 

1.2 

13 

14 

1.5 

16 

1- 7 

1.8 

19 

20 

23 

20 

20 

20 .-. 
a 

10.c;er bound. 

b 

The upper bound is given f i r s t ,  fallowed by the 

Ln those cases where  U R Q ~ C  tEiaa ~rr;e N., was used, 
J.4 

5" a lower bound is i n d i c a t e d  f o r  each N 



-?I 1 
Upper and lok-er bounds agree  t o  fourteer, s ign i f l can r .  d i g i t s  

those  cases where N = NL = ,$ 9 5 .  

listed, for example, R = 1.0, m = 1, a = 20, M 

agreement i s  poorer,  but is improved somewhat by iricreasirig N . Thc 

l i n t i t a t i o n  here seems t o  be due to the poorness of the upper bound 

i n  

For t h e  1zigheL;c energy iei;els U 

= 20, RL = 20, t h e  U 

1, 

r a t h e r  than the  dimension of the  Aronszajn space. 

U' To s e e  i n  more d e t a i l  the e f f e c t  OE N f o r  a f ixed  valve. of N L 
seve ra l  examples are given in Table 2. 

when the  Aronszajn space 

NL less than (R-m), the  lower bound E 

given by 

It is SWKI from (6.29) that ,  

i s  chosen as indicated i n  (6.26), for: 

i s  R persistent lower bound, u 

In order  to o b t a i n  b e t t s r  lower bounds, therefme ' ,  the Armszajrt 

space p has t o  be chosen i n  such a way that t hem are non-vanishing 

elements of p namely Ba,,, @Q-Ir,tr, and f3 j.n o u r  case.  Iccredsing 

N 

bound 

i' p, -m+2 

i n  Table 2 beyond the  v a l u e s  indica';ed d i d  not improve the  lower U 

--.- - 
Except f o r  one case,  m a 0, a = 0 ,  K = 0.5, where it agrees - E l i  

only f o r  13 significant figures. 



TABLE 2 

EFFECT OF NL ON EL IN TIE CONVERGF2XE 
TO THE EIGENVALUE - --- 

1 E and E 
NU NL u K 'R m 

1 

1-9 
10 

1 

2 

0.7 16 

1 e o  12 

3 0.7 10 12 110 coo4230273525 . 
1-6 ~o~.300c~000000c,* 

a The notation 1-9 indicates that th.e value of % ranges 

from one through nine. 

bAgterisks indicate persistent lower bound. 



CHAPTER VI1 

The n o n - r e l a t i v i s t i c  liarniito1:ian o€ ?h i s  s y s t L m  is dLvidecl 

i n t o  two p a r t s  : 

w i t h  

and 

% O + V  

(7.2) 

where r and r3 dcnote thc  r a d i a l  p o s i t i o n s  of electron:; 1 and 2; 1̂ 1 b 12 

i n  which the s p a c i a l  coord ina tes  r and r, are  sywmetric w i t h  respect 

t o  t h e i r  in te rchange ,  and the angular niomcntrm i s  z e r o  

1 c 
121) 

I n  t he  a p p l i c a t i o n  of the  mcthod deve.l.oped kr; C!izpccr V, w e  

have freedom i n  choosing a subspace f o r  the i n n e r  projection of t h e  

r e a c t i o n  opera tor  t ( € > .  L3owever, wi? have t o  t ake  i n t o  ~ c c o u n i .  two f3.c-  

t o r s  i n  our corisidcbration: one i s  the  convenisrice of OUT tr~at:niciit and 

t h e  o the r  i s  t h c  convergence p r o p e r t y  31 L,ur i w e r  b o u n d s .  H e r e  wc 

(7.1.) 



practical ly  convenient: Bazley space &, the other is the LBwdir, space 3. 9 

Since the choice of  the Bazley space has some interesting features in 

connection with the s i a p l i c i t y  of our calculations and the independence 

of our lower bound to the upper bound 5 we will brief ly  describe this  

choice i n  Appendix 11, while in th is  chapter we w i l l  mainly work with 

the LBwdin space. 

0' 

The LBwdin projection of t gives  

where, using (4.22) and (5 .67) ,  &has the form 

The unperturbed Hamiltonian flo has known eigenvalnes and eigenfuric- 

t i o n s  which are products of hydrogen-like wave functions. 

eigenvalues in atomic units are given by 

The d iscre te  

Arranging these in a non-decreasing sequence 

0 0 
E 1 , L E 2 . & .  . . I 

one obtains from (7.5) 

E ; = - Z )  2 



Hc?iic.e, i f  an upper 

- 0 . 6 2 5 ~  then tile 

In Table 3 

use  ( 3 . 3 )  f o r  the 

2 

s i o n a l  re fe rence  ranifold: 

= (r-)K 1 HF 10 1. 1c\ 2 (r )R [r,) 

where K are hydrogcaic normalized rad ia l  wavc; functions 
nk! 

are used f o r  the LBwdin [ 231 S i x  terms of t he  Hyllerairis ser ies  

space. The normal.izcd forms of t hese  s ix  terns a r c :  

where 

1 4- t = 1- -r and u = r ( " 7  . 10 s =  
*.. 1. 2 1.2 * 

One can en la rge  the Lbwdin space in order  to improve t h c  lover bL>unlic. 
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The a r b i t r a r y  s c a l i n g  parameter y i s  varied c o  mzxhkze  the lower 

bounds ob t a inab  Is 

It is seen from (7.7) and Table 3 t h a t  for  To( Lo> to be ne@- 

t i v e  d e f i n i t e  S( &) has t o  con ta in  a t  l e a s t  four lower lying e igen-  

furictions of fl', namely Y , y2> yo and Y fo r  Z = 1, whereas r ) i l ly  0 0  0 
1 3 4 

0 one e igenfunct ion  Y i s  s u f f i c i e n t  f o r  I, z 2. 

example, a31 s i x  func t ions  i n  (7.8) for S( S-), then from ('7.3) t-i?J 

~f one uses ,  n; a ;?pica1 I 

and 

S u b s t i t u t i n g  (7.12) i n t o  (>.84), then t h e  lowest  e igenvalue of (5.8)+) 

i s  a lower bcund t o  the ground s t a t e  of flw 
obtained t h e  r e s t  of t h e  c a l c u l a t i o n  i s  elementary. Most of the  ove r l ap  

i n t e g r a l s  of t h e  type <y:\jk> are compiicated in t h e i r  a lgeb ra i c  {orin. 

Some t y p i c a l  examples of thc terms which coItrpri.ss each elc,,. 

ma t r ix  a r e  

O ~ c e  t he  .h m C r i : c  is 

1 

: of the 



Numerical $eeul t s  and Discussion 

The numerical calculations was carried out  on the 1EM 709 

electronic computer at the  Univers i ty  of F l o r i d a  Computing Center.  

I n  the  estimation of t h e  lower bound t o  the ground state energy, hy 

use  of (?;.83), Givens- subrout ine  was used. 

ji,j2 ,..., jNP . The energy i s  expressed in atomic units.  

In Table 4, t he  lower bounds t o  the ground s t a . t e s  of t w o  exec- 

The upper and  lower bounds tron ions from 2 = 1 to Z = 10 are listed. 

agree up to two significant d i g i t s  except f o r  Z = 2 .  



N M g ; f  2 8  0 8  
d d d d  



I n  Table  3, t h e  e f f e c t s  of N and N on t h e  lower: bounds f o r  
R P 

each 2 are demonstrated w i t h  optimized T) a t  N 

seen  form Table  5 that the  lower hounds do n o t  ircprove, as 3ne migh: 

hope from t h e  d i scuss ion  of Chapter V, when oae i nc reases  the  value of 

NR. This might i n d i c a t e  t h a t  even if t h e  lover bound El Brr (5.78) 

should be improved by inc reas ing  N the corresponding improvement i n  
R’ 

= 6 and NP = 6 .  Lr, is R 

may be o f f s e t  t o  some extent: by t h e  tendency for€: t o  be  depressed 

as t h e  s i z e  of i t s  secular equation increases (acc ; rd ing  to the  varia- 

t i o n  p r i n c i p l e ) .  

t o  a n  improvement of t h e  lower bounds. 

change comes as we increase N 

jq t o  t h e  Ltlwdin space spanned by j 

than  50 percent of t o t a l  improvement, from N 

the change of Np from 2 t o  3.  

r a t h e r  t han  inc reas ing  t h e  number of func t ions ,  f o r  the L h d i n  space 

On the other hand t h e  increased value  of N g ives  risct P 
For Z = 1, the most cu t s t and ing  

from 3 t o  4, which corresponds t o  aGdik?g 

and j , whereas for Z =” 2 more 

t o  Np,O, takes place a t  

Hence the choice of t h e  proper  func t ion ,  

P 

1’ j 2  3 

P 1  

seems t o  be more significant i n  our prcblem. 

parcziiieter q on the lower bounds f o r  2 = 1 (wi th  N 

Z = 2 (wi th  Np = 1,2,a..6) is i l l u s t r a t e d  i n  F igs .  2 and 3. 

f i g u r e s ,  t h e  inc rease  of N up t o  6 does not  improve lower bounds appre-  

c i a b l y .  For some p a s t  of t he  curves the improvement of the lower bounds 

The  e f f e c t  of t h e  s c a l i n g  

= 4, 3 ,  and 6) and P 
In bo th  

R 

by the inc rease  of Np is t oo  small t o  be seen i n  the present  f i g u r e s .  

As a numerical demonstration, €or 2 = 1, 7 = 0.7 one has 
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F o r  H-, the lower bounds assume a fiat t o p  t y p e  CuTVi:. 

be!-iavioz: of the curves f o r  2 = 1. w-y e~cp la in  the large s a p  b,-:~-,~v.een 

t h e  u g p ~  and  the lower bounds. T h i s  behavior rnsy i n d i c s r e  i:hat t:hc 

func t ions  w e  have chosen f o r  t he  L8wdin  space, a l thccgh sui.."iSSlc fsr 

hel ium, a r e  probably not e n t i r e l y  suitable f o r  FJ. 

v a r i a t i o n  of 7 ) .  

'%e f ia t  r . 0 ~  

- 
w1t.h r e s p c c t  LU tLw 

,4 good choice of t h e  lJlh7din space i s  csscnt i r r l  ii: c)?:de;- t o  

1, iniprove o u r  lower bounds. 111 contrast .  wi th  uhc I~eha.vlon. fc8r  Z = 

Fig. 3 ,  for  Z = 2, shows a f a i r l y  good convergence of t hc  bound 2 s  w 

iilcrease N furthermore,, t h e  curves  a r e  of an  appxc~x im t:i.ly p a r a b o l i c  

a p p m r a n c e  ind ica t ing  t h a t  the choice of t he  L3wdi.n sp3ce i s  sa',:i.sf;ic-. 

t o r y  ~ 7 i t h  r e spec t  t o  t he  v a r i a t i o n  of t h e  s c a l i n g  parmieter  ri. Intc-trr 

cstingly enough,  F i g .  3 i s  very  siinilar t o  t h a t  o b t a i n e d  by  J.  G .  Cay'.'.'': 

He obtained the lower bound t o  t he  ground stats of hc?.ium by solvinj; t h e  

dctcrmi.nant: 

P; 

.. 7 i. 'j 
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See Table 1 of 1153. * 12 

The upper bound of the HI is improved 126’ by 0*0133 a.u,, 

from -0.52531 ta 4.52646, by extendihg the HylGeraas-type wave func- 

tion from three tern to six terms, whereas is seen from Table 5 the 

corresponding improvement for the lower bound is about 0.113. 

shows that the lower bounds improve more rapidly than the upper bairnds 

do by introducing more t e r n  

lower bounds of the ground state of H- by introducing carefully chosen 

functions in the Lhdin space. 

This 

*e22 . Hence one can hope t o  improve the 

In concluding the discussion it can be noted that, as m e  can 

see from Fig. 2, the most outstanding impravement of the lower bound t o  

‘the ground state of 8- takes place when one incorporates the function 

j4 into the Ltjwdin space. also 

shows remarkable improvement on the lower bound even if it does not 

The introduction of che function j 5 

render significant contribution between the range 7 = 0.68 and 7 O.&. 

I n  term of hydrogenic radial functions, j4 and j assume the form 3 

j5 = N 5 C R  10 (r 1 )R 32 ( r  2 > + 2 %1(r1)2 s I ( r 2 )  + “-9(”2)RloCr,)J, 

(7.15) 

where N and N are normalizarion constants, showing that j and j are 

independent of 8 the angle between electron 1 and 2. Since R (r), 

%l(r), and R 

another, it seems that the introduction of some functions,, which can 

give a more flexible radia1.distribution with respect to the varfation 

4 5 4 5 
12’ 10 

(r) have different spacial distributions from one 
32 



of over the w i d e  range of space, can improve the lower bound satia- 

factori ly .  In t h i s  connection, it might be wotkrdhflc to incaxparn,te 

into the Lbwdin space some carefully chosen radial functions which hav*j? 

two different orbitai exponents, for example, a functiaa of the fom 

investigated by Chandrasekar , t m  

-br1-".r2 
-arl-br2 + e j = ( e  1 + c'rl2 + . (7.16) 

It may be a l s o  worthwhile trying t o  use Hyllcraias ser i e s  given i n  (7 .9)  

by giving a different  scaling parcrmncer far each function. 

For practical applicationb, a proper choice of the functions 

w i t h  suitable scal ing parameters for the inner projection i s  to bc 

preferred over expanding the nmber of functions. 



XPPEMDM I 

Evaluation of the Hatrix Elements used in Chapter VI1 

For §-state configurations, the atomic wave funct ion can be 

E233 described i n  terms of the three coordinates . 

(A1 .1> 

s = r 1 + r 2  P 

t = rx =2 t - 
12 u = r  . 

The volume element i n  t e r n  of s, t, u coordinates (Eylleraas coordi- 

hates)  is r 28,P 17311 

dv dv fu(s2=t2> du ds dit 3 . 2  

with the range 

( A l . 2 )  

In terms of the Hyileraas coordinates, $-fo given by (7.2) assumes 

[ 291 the form 

and 

The multi-dimensional reference functions i n  (7.81) are Linear combi- 

nations of the form 

-bt sk t$ > (a:. 6 )  -as e f = e  

79 



where a>lblhO and 4 is even; whereas the function for the  i n n e r  

1 

i 1 

pro jec t  i o n  have the form 

j -  - e'@skt2"," (Ab ,e:> 

Matrix elements i n v o l v i n g  f u n c t i o n s  of t y p e  f arid j were a l i  evaluated 

in a c l o s e d  farm. I n  the eva lua t ion  of A m a t r i x  u s i n g  Hylttraas 

coordinates 8, t and ti,  two t .ypes of integrals  &re u i i l i . z e d .  Orie is 

f o r  (A1.8) are given The o the r  is 

'1 

The i n t e g r a l  (A1.9) Wn6 used as a meane of checkang ficme a l g e b r a i c  e x p ~ ' c s -  

sions for the 

na t e8 

matrix which were obtained by use of t h e  po lar  coordi-  

c313 
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For the convenience of F o r t r a n  p rograming  this form i s  transformcd 

i n t o  

(81.10) 

In o rde r  t o  avoid the e f f e c t  of round-off e r r o r ,  ( A l . 9 )  i s  programmed 

i n  double p rec i s ion .  This  Fortran Program i s  l i s t e d  on the  fo l lowing  

pages .  

. 
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FUNGT I ON DCT ( M 1 

4 IFtY-1) 5, 5, 7 
C FUNCTIQIJ MAKthlG FACTORIALS. 

D 5 DCT = 1. 
D 6 RETURN 

7 K - 1  
8 XFlM-8) 9, 97 13 
9 130 10 I 2 2 r M  

10 K = K - ,  
0 1 1  DCT = K 
0 L2 R E T U R N  

13 00 14 1=2?8 
14 K=K:l 

D 1 5 S = K  

D 17 F I  = 1 .  
0 18 S = S r F I  
0 19 DCT = S 
D 20 R E T U R N  

16 00 18 1 5 9 p M  

EN D 

FUN CT I: ON bCTD( M f l 1  
C FUNCTlQN M A K l N G  M FACTORIAL DEVlDED BY N FACTORlALa 
c M MUST BE LARGER OR EQUAL TO N. 
C M AND N MUST BE P O A I T l V E  INCLUDII\IG ZERO- 

LO N l  = N+1 
t l  LF(M-NI 14, 12, 14 

D 12 DCTD = 1.. 
D L3 RETURN 

D IT S = 1.. 

D 17 F f  = 1 
D 18 S = S:FI  
D 19 OCTD = S 
D 20 RETURN 

L4 IF(M1 IS* 12, 15 

26 DO 18 I . - N 1 ,  M 

Et40 



APPEBDLX 11. 

Lower bounds u s i n g  the Aazl.e,v Space 

It was seen in Chapter V t h a t  f o r  V >  G ,  Dfii? o b t a i n s  

;!$;2, 1 */ - 1. -1 t = v  - T o  

I f  an upper bound €, 0 satisfies the  relation 

(A2.4) 

ther. the  correspord:  :IS form of (7 .li) reads 

or 

This  choice of the inner project ior l  has 2.n advantage i n  t h t .  i: si.l::j?3-i- 

f ies  the calculatlons. For t h i s  c a s e  

86 



The lowest eigenvalue of the m i t r i x  obtained from (A2.8) gives a Xmer 

bound to the ground state  energy of $?. 
As a particular case, if we let n &g, then every element of the 

matrix has the form (A2.6) and the corresponding lower bound is 

independent of an upper bound Eo. 

The simplest example of this choice i a  rendered by the oue- 

dimensional Bazley space 

then 

A lower bound, for this case, is given by 

which ever is  lower. 

For the two electron ions, one has 

(A2.10) 

(A2.11) 

E; 4- < Y p  -1 IP,) 0 
= - 2 2 f ---z 16 

35 



and 

0 It is seen t h a t  f o r  Z = I, E, i s  a lower bound t o  the ground s t a t e  
c 

is a lower bound. T t  is 2 1;; for 2 2 2 ,  - z 4- y z  
. J /  

is a l o w e r  bound to tk:e E 1 f < Y~\V-’IY, O > -1 
0 

ground s t a t e  energy of f - f  i f  
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